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The chemistry of natural products has been investigated
thoroughly in recent decades, resulting in a better under-

standing of enzymatic processes and in the development of bio-
synthetic knowledge and biogenetic theories for a logical classi-
fication connecting a large variety of compounds. Computational
methods have been recently shown to be an important comple-
mentary tool for the study of the pharmacological activity of
natural compounds.1�6

A useful approach for the study of natural products would be
to carry out drug tests on a large number of biological targets with
a better chance of evaluating their potential activity. However,
one of the main problems in the study of natural substances is
their limited availability. Unfortunately, many interesting sec-
ondary metabolites are produced by organisms in small quan-
tities. Thus, for the isolation of a few milligrams of pure active
metabolites, just enough to conduct preliminary in vitro biological
tests, it is often necessary to extract kilograms of an organism. The
small amounts of compounds obtained fromnatural sources usually
prohibit the performance of pharmacological tests against a large
number of receptors. One approach to possibly overcome this
problem may be represented by inverse virtual screening, a new
computational tool used in facilitating new drug discovery.7�10

We describe herein the molecular docking of a database of
small natural molecules against a panel of receptor sites in an
attempt to find ligands and binding conformations to direct
experimental assays on specific biological targets. This approach
has been applied to the discovery of potential antitumor com-
pounds through the interaction with a number of protein targets
involved in cancer. The panel of targets was built from the Protein
Data Bank (PDB), by the selection of proteins involved in different
forms of cancer and in several steps of tumor development and if
commercially available for subsequent biological tests. The large

number of available models for proteins is particularly useful for
studying a wide range of molecules with variable biological activity.

It is noteworthy that this approach is also potentially appli-
cable to libraries of synthetic compounds, to accelerate the anal-
ysis and to evaluate structure�activity relationships through a
virtual method before the experimental study. The inverse virtual
screening method is also useful to provide information regarding
ligand�protein interactions potentially affecting the physiology
of the protein. A pilot inverse virtual screening was inducted on a
library of bioactive compounds (“Library on Bioactive Mol-
ecules”, www.libiomol.unina.it) classified as (a) molecules with
an action on the cytoskeleton; (b) cytotoxic compounds; (c)
antitumor agents; (d) antiproliferative substances, and (e) anti-
angiogenic compounds. To the library mentioned above were
added six molecules belonging to the class of cembranoids, for
which the parent is decaryiol.11,12 In total, 43 molecules were
examined, comprising 27 natural compounds, three semisyn-
thetic compounds, and 13 synthetic compounds designed for
mimicking selected natural skeletons. The results obtained are
reported in full in the Supporting Information, but in this paper
only values concerning a small number of targets will be reported.

’RESULTS AND DISCUSSION

A library of compounds was screened against a panel of targets
selected for their correlations in cancer formation on the basis of
the inverse virtual screening method. This innovative in silico
approach allows a prediction of activity and selectivity by the
evaluation of binding energies, so it is possible to obtain a
restricted group of promising candidates for subsequent biological
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ABSTRACT: An inverse virtual screening in silico approach has been
applied to natural bioactive molecules to screen their efficacy against
proteins involved in cancer processes, with the aim of directing future
experimental assays. Docking studies were performed on a panel of
126 protein targets extracted from the Protein Data Bank, to analyze
their possible interactions with a small library of 43 bioactive com-
pounds. Analysis of the molecular docking results was performed
through the use of tables containing energy data organized in a matrix.
The application of this approach may facilitate the prediction of the
activity of unknown ligands for known targets involved in the devel-
opment of cancer and could be applied to other models based on
different libraries of ligands and different panels of targets.
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tests. In particular, Autodock�Vina13 calculations were performed.
This software has been shown to produce, together with an in-
creased efficiency in predicting the experimental binding poses and
energies, a 2 orders of magnitude speed-up compared with Auto-
dock 4,14 and it has been designed for parallel computing. For the
above reasons, it represents a particularly suitable tool for this study,
for large virtual screening studies in general, and for the investiga-
tion of ligands presenting large numbers of active torsion angles,
such as naturally occurring compounds. Docking calculations were
perfomed between 43 molecules (Chart 1) previously tested for

their potential activity (antitumor, cytotoxic, antiangiogenic, anti-
proliferative, activity on the cytoskeleton) against a panel of 126
protein targets involved in tumor processes (Table S1, Supporting
Information). The library used for the calculations included several
types of molecules, characterized by similar or different chemical
structures with known configuration.
Analysis of Predicted Binding Energies. The results of

inverse virtual screening were collected in different tables and
initially sorted by single ligand versus target, with the energies
expressed in kcal/mol from the highest to the lowest values.

Chart 1. Structures of Compounds 1�43
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In this way, it was possible to identify ligands with good affinity
and selectivity by evaluation of the predicted binding energies.
The mere analysis of the binding energies highlighted a restricted
group of targets with high values of predicted binding energies on
a significant number of ligands tested (Table S2, Supporting
Information), thus suggesting the use of a remodulation of the
results using a different criterion.
Comparing Standard Ligands. Accordingly, docking calcu-

lations of crystallized ligands, with a well-known binding mode,
were performed in order to obtain a standard energy to be intro-
duced as a filter in the evaluation of the binding energies of
the matrix used. In order to assess the efficiency of the docking
experiments, the root-mean-square deviations (rmsd, expressed
in Å) of the docked conformations related to the crystallized ones
were calculated. Choosing a cutoff of 2 Å (an upper limit indi-
cative of a good superimposition), 63% of the correlated struc-
tures within this range were identified (Table S3 and Figure S1,
Supporting Information). This procedure was applied initially to
44 targets of the panel for which docked ligands (standards)
complied with this requirement. In particular, the efficiency in
the binding was evaluated through the ratio between the binding
energies of the ligands and the standards, as indicated in eq 1:

δ ¼ ΔGcompounds=ΔGstandards ð1Þ

Compounds showing a δ g 1 were selected from the library.
From this analysis, 335 associations between the ligands and

the targets on 1892 calculations performed showed a δg 1, sug-
gesting a consistent number of false positives (Table S4, Sup-
porting Information). Careful analysis of the chemical structures
highlighted a connection between high values of δ and high mo-
lecular weights of Libiomol ligands, especially when these were
correlated to low molecular weights of standard ligands. Exam-
ples are the crystallized ligands (standards) for the targets pten
(PDB code = 1D5R; standard C4H6O6, MW = 150.09 g/mol),
tp (PDB code = 1UOU; standard C9H11ClN4O2, MW = 242.66
g/mol), and clk1 (PDB code = 1Z57; standard C11H11N5O2,
MW = 245.24 g/mol).
This trend could be explained by considering the importance

of molecular size in the predicted docking energy; in particular an
increase of this parameter may influence the amount of van der
Waals interactions, representing an important factor for the
calculations with docking software.15

Introducing Ligand Efficiency.For the above considerations,
subsequent analysis were performed considering the “ligand
efficiency” (LE) of all the molecular structures. Ligand efficiency,
a term that has recently attracted the attention of researchers
involved in the drug discovery field, is generally defined as the
binding energy of a ligand normalized by its size.
Successful drug discovery involves the optimization of many

variables, such as compound potency, selectivity, cellular activity,
solubility, metabolic stability, bioavailability, and acceptable toxi-
city. Recently, the concept of ligand efficiency as a measure for
lead selection was suggested. Ligand efficiency reduces the num-
ber of variables by combining potency with molecular weight and
polar surface area. This parameter is useful for effective and effi-
cient drug discovery and might provide the basis for a mathe-
matically robust optimization of the drug discovery process.16

The ligand efficiency depends on the size of the ligand, as smaller
ligands have a higher efficiency than the larger ligands. One of
the reasons behind this principle is the reduction in the area
accessible to the ligand on increasing the size of the ligand. These

findings have important implications in the screening of libraries
of compounds.
Ligand efficiency is calculated using the equation

LE ¼ ΔG=N

where ΔG = RT ln Kd and N is the number of non-hydrogen
atoms.16

On this basis, we calculated the ligand efficiency of our data-
base of compounds and for the standard ligands, and the results
are reported as ratios between the values obtained for the ligands
and the standards (Tables S5 and S6, Supporting Information),
as indicated in eq 2:

δLE ¼ LEcompound=LEstandard ð2Þ
For each receptor considered, selected compounds were those

complying with the following conditions:

ðaÞ δLE g 1; ðbÞ δLE g M þ 3σ

where M is the average value of δLE for all the compounds.
Histograms associated with each target were drawn to assess

the overall behavior of the compounds analyzed for ligand effi-
ciency. The trends observed for each target proved to be very
similar, as shown in histograms reported in Figure S2 of the
Supporting Information.
In a matrix of 43 compounds and 44 targets, the molecules

with a low molecular weight showed the best values (δLE g 1):
6-methylheptyl sulfate17 and aegelinol18�20 in docking with 18
targets; 2-hydroxynephthenol21 in docking with eight targets;
iodocionin22 in docking with 17 targets; and (Z)-oct-5-enyl
sulfate17 and osthol23,24 in docking with 17 and 14 targets, re-
spectively. The common targets for these compounds were abl2,
akt, bap1, cathepsin B, cathepsin K, cdk6, egfr, mtor, and pyk2.
The most important feature of this analysis is that small mole-
cules with a better ligand efficiency than standard ligands were
selected systematically by the screening procedure.
Ligand efficiency is very important to establish limits in the

building of new structures adapted on an active protein site, but
the evaluation of this parameter was not considered a useful
method of screening in this study.
Normalization of the Matrix. To overcome the lack of

selectivity of the molecules chosen for the library to the panel
of receptors, the binding energy (kcal/mol) data were organized
in amatrix of 43 structures versus the 126 targets of the antitumor
panel. The aim was to exclude the false positives through a
mathematical filter aimed at eliminating systematic errors asso-
ciated with molecules and targets in their interaction.
To obtain the normalization of binding energy values in the

matrix, eq 3 was applied:

V ¼ V 0=½ðML þMRÞ=2� ð3Þ
In this convention, V is the new value associated with each

compound, V0 is the value of binding energy obtained from the
docking calculation, ML is the average binding energy of each li-
gand (on different targets), andMR is the average binding energy
associated with each target (on the various ligands). Every single
value in the matrix representing a single ligand versus a specific
receptor was accordingly normalized taking simultaneously into
account the influence of the two specific averages contained in
eq 3 (Table 1; the complete set of data is contained in Tables S2
and S7 of the Supporting Information).
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In this case, the values obtained led to the creation of histo-
grams showing a different trend of the individual compounds
against every single target, highlighting only six molecules
from the entire library (Figure S3, Supporting Information). The
molecules were selected through calculation of the standard
deviation from the average of matrix (M); in particular the mole-
cules were chosen up to the value of M þ 3σ to classify com-
pounds with the best interactions. Selected results are reported in
Table 2. The complete set of data is contained in Table S7 of the
Supporting Information.
Analysis of the tables confirmed the validity of the method. In

particular, as reported in the literature, both camptothecin-7-
carbaldehyde-O-3-hydroxypropyloxime (19)25 (Figure 1a) and
camptothecin-7-methylene-O-tolylamine (20)26 (Figure 1b) are
semisynthetic derivatives of the naturally occurring camptothecin,
which in biological assays show an action on topoisomerase I.27

They stimulate topoisomerase I-mediated DNA cleavage and the
persistence of the cleavable complex; these compounds were
evaluated for their cytotoxicity against the H460 human non-small
cell lung carcinoma cell line, using topotecan as a reference
compound (IC50 = 0.40 μM; topotecan 1.38 μM).28 Topotecan
and these compounds are very well overlapped in the pocket
receptor, establishing many common interactions. From Figure 1
the accuracy of Autodock�Vina calculations on these two com-
pounds on the panel of receptors in identifying the target of choice
was clear.
The two derivatives of camptothecin establish van der Waals

interactions with the same residues of the pocket occupied by
topotecan (Asn722, Lys532, Asp533, Arg364), with Kd = 2.65�
10�9 M (19) and Kd = 2.96� 10�10 M (20). As a reference, the
sameVina calculation has been performed on topotecan used as a
model, and the result was�10.2 kcal/mol (Kd = 3.34� 10�8M).
Two other positive results were obtained in the calculated

interactions, between the natural cytotoxic thiaplidiaquinone A30

with the receptor mTor (PDB code = 3FAP) and the cytotoxic
topopyrone C31,32 with the receptor wee1 kinase (PDB code =
1X8B; Figure 2a).33 Topopyrone C is very well superimposed on
a crystallized inhibitor reported in the literature on wee1 kinase (9-
hydroxy-4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione). It
establishes van der Waals interactions with Ile305, Val313,
Lys323, Ala326, Phe433, and Gly382, like the crystallized ligand,
with a Kd = 1.35 � 10�9 M, when compared with a Kd for the
standard ligand of 5.81� 10�10 M. Topopyrone C is a synthetic
compound evaluated for its cytotoxicity against theH460 cell line,
using topotecan as a reference compound (IC50 = 29.50 μM;
topotecan 1.38 μM). It induces the same sequence selectivity of
topoisomerase I-mediated DNA cleavage shown by camptothecin
derivatives. As reported in the literature on pharmacological assays,
the interaction with topoisomerase I has been found. Topotecan
and topopyrone C are very well overlapped in the pocket receptor
(Figure 2b); topopyrone C establishes van der Waals interactions
with the same residues of the pocket occupied by topotecan
(Asn722, Lys532, Asp533, and Arg364) with Kd = 2.65 � 10�9

M, while for topotecan the value is Kd = 3.34 � 10�8 M.
To obtain confirmation of the proposed method, the table

organized in a matrix has been integrated with the Autodock�
Vina results on two standard known molecules as ligands of the
targets abl2 (PDB code = 3HMI) and FTase (PDB code =
1LD8). Both ligands (5-amino-3-{[4-(aminosulfonyl)phenyl]-
amino}-N-(2,6-difluorophenyl)-1H-1,2,4-triazole-1-carbothioamide
for abl2 and (20S)-19,20,21,22-tetrahydro-19-oxo-5H-18,20-ethano-
12,14-etheno-6,10-metheno-18H-benz[d]imidazo[4,3-k][1,6,9,12]-
oxatriazacyclooctadecosine-9-carbonitrile for FTase) are crystals

Table 1. Values of Binding Energies for Three Sample
Ligands and 33 Sample Targets

compounds

target 1 2 3 MR
a

abl �7.5 �7.0 �7.9 �8.2

abl2 �6.2 �6.1 �8.2 �7.5

aif �9.4 �9.3 �8.1 �8.6

akt �8.6 �8.2 �7.1 �8.0

ape1 �6.6 �6.7 �5.7 �6.6

aurkin �7.4 �7.0 �8.2 �8.2

bap1 �6.0 �6.0 �6.7 �7.0

bcl2 �7.9 �7.9 �6.9 �7.5

bclxl �8.2 �8.0 �6.6 �7.4

braf �8.6 �8.8 �7.6 �8.5

calmodulin �6.6 �6.6 �5.7 �6.8

caspase1 �5.7 �5.5 �4.6 �5.3

caspase2 �5.2 �5.2 �4.9 �5.0

caspase3 �7.2 �7.4 �6.4 �7.1

caspase7 �8.4 �8.4 �6.8 �7.7

caspase8 �6.9 �6.9 �6.3 �6.6

cathepsin B �8.0 �7.9 �6.4 �6.9

cathepsin G �7.7 �7.7 �6.5 �6.8

cathepsin K �6.3 �6.5 �5.8 �6.1

cathepsin L �6.4 �6.1 �5.9 �6.3

cdk2 �8.5 �8.6 �7.8 �8.1

cdk6 �7.9 �8.6 �6.9 �7.8

cdk7 �8.9 �9.0 �7.8 �8.3

cdk9 �8.3 �8.4 �6.1 �7.6

chk1 �7.3 �7.4 �7.2 �7.3

chk2 �6.2 �6.3 �8.7 �8.0

ciap1 �5.9 �5.7 �5.6 �5.9

ck2 �7.8 �7.9 �7.7 �8.1

clk1 �7.6 �8.0 �7.8 �8.1

clk3 �8.7 �9.1 �7.4 �8.5

cmet �6.4 �6.5 �7.4 �7.6

cyclin A �7.5 �7.5 �5.5 �6.4

dhfr �8.5 �8.5 �7.4 �7.9

ML
b �7.2 �7.2 �6.6

aAverage of the values for targets. bAverage of the values for ligands.

Table 2. Selected Compounds after Normalization of the
Matrix

compound target V

19 topI 1.418

20 chk2 1.446

lsd1 1.450

mTor 1.690

topI 1.483

28 caspase2 1.409

31 abl2 1.398

41 mTor 1.438

43 wee1 1.429
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in the corresponding PDB. Docking calculations of the two com-
pounds were performed on all the target members of the panel.
The aim was to verify that the two known ligands would show
significant V values when interacting with their specific target.
The candidate targets for these molecules were selected through
calculation of the standard deviation from the average of matrix
(M) choosing V values up toMþ 3σ to classify the targets with
the best interactions. For the crystallized ligand of abl2, two
receptors were selected, namely, its receptor abl2 and nNos
(PDB code = 3JT4). The structures obtained from Vina calcula-
tions for the abl2 ligand were very well superimposed to the
crystallized compound, finding the same interactions with the
receptor reported in www.pdb.org (Ligand Explorer).
On the other hand, the good interaction of the same ligand

with the receptor nNos (Figure 3) is due to common interactions
with its known ligand (N-5-[(3-(ethylsulfanyl)propanimidoyl]-
L-ornithine).34 The molecule establishes van der Waals interac-
tions with Phe584, Glu592, and Tyr588, and one H-bond with
Gln478, as reported in the literature for the crystallized ligand,
and is very well accommodated in the pocket of the receptor.
Also, the structure obtained from Vina calculations for FTase
ligand35 is perfectly superimposed to the crystallized compound
for this receptor, displaying analogous interactions.
The data discussed above are useful to confirm the validity of

the proposed computational method, and, besides the interac-
tions with experimentally known targets, apparently discordant
results are justifiable through careful analysis of the observed
interactions.

Classical biological assays allow the evaluation of activity asso-
ciated with small molecules against one defined target protein.
Thus, the main risk is to confine the study to a single effector of a
pathological process. In the present report, the concept of inverse
virtual screening has been introduced. The application of this
method may facilitate the prediction of the activity of secondary
metabolites from terrestrial andmarine sources on known impor-
tant receptors involved in the development of cancer. However,
the variability of the binding sites of the different targets does not
allow for the interpretation of docking calculations through a
simple comparison of the predicted binding energies. To over-
come this problem, we have applied a normalization of the matrix

Figure 2. (a) Superimposition of 9-hydroxy-4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione (colored by atom type: O red, N blue, H white, C
yellow)/topopyrone C (colored by atom type: O red, N blue, H white, C cyan) in docking with wee1-kinase (PDB code = 1X8B). (b) Superimposition
of topotecan (colored by atom type: O red, N blue, C pink)/topopyrone C (colored by atom type: O red, N blue, H white, C cyan) in docking with
topoisomerase I (PDB code = 1K4T).

Figure 3. Interactions of the crystallized ligand of abl2 (colored by atom
type: F green, O red, N blue, H and C gray) with nNos.

Figure 1. (a) Superimposition of topotecan (colored by atom type: O red, N blue, C gray)/camptothecin-7-carbaldehyde-O-3-hydroxypropyloxime
(19) (colored by atom type: O red, N blue, C green) in docking with topoisomerase I (PDB code = 1K4T). (b) Superimposition of topotecan (colored
by atom type: O red, N blue, C gray)/camptothecin-7-methylene-O-tolylamine (20) (colored by atom type: O red, N blue, C yellow) in docking with
topoisomerase I.29.
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that collects all values of ΔG from the calculations. In this way,
some promising molecules with good superimposition with ref-
erence compounds were identified. The present results demon-
strate that through Autodock�Vina calculations on large panels
of ligands and targets, a screening of energies is possible in order
to select the best interactions. From these selections, experi-
mental tests could be started on a restricted number of proteins.
Thus, inverse virtual screening may be considered as a new accu-
rate tool to facilitate the drug discovery process.

’EXPERIMENTAL SECTION

General Experimental Procedures. The library of compounds
was downloaded from the Web site www.libiomol.unina.it. Chemical
structures were processed with Macromodel 8.5 (Schr€odinger, LLC,
New York, 2003). Optimization (Conjugate Gradient, 0.05 Å conver-
gence threshold) of the three-dimensional structures was applied after
Monte Carlo Conformational Search and Molecular Dynamics simula-
tions. Molecular mechanics/dynamics calculations were performed on a
quad-core Intel Xeon 3.4 GHz using Macromodel 8.5 and the OPLS
force field. The Monte Carlo multiple minimum (MCMM) method
(5000 steps) was used first in order to allow a full exploration of the
conformational space. Molecular Dynamics simulations were per-
formed at a temperature of 600 K. A constant dielectric term, mimicking
the presence of the solvent, was used in the calculations to reduce
artifacts.

Protein targets, known to be involved in tumor processes, were pre-
pared by a search of crystallized structures in the Protein Data Bank data-
base. Water molecules were removed, and polar hydrogens were added
with AutodockTools 1.4.5.

Molecular docking calculations were performed using Autodock�
Vina software. The grids focused on receptors were built using as ref-
erence the binding mode of crystallized ligands in PDB files (Table S1,
Supporting Information). For the docking studies, we used an exhaus-
tiveness of 16. For all the investigated compounds, all open-chain bonds
were treated as active torsional bonds. Autodock�Vina results were
analyzed with Autodock Tools 1.4.5.

’ASSOCIATED CONTENT

bS Supporting Information. PDB codes of targets with grid
boxes used in calculations (Table S1), tables of data (Tables
S2�S7), and graphs (Figure S1�S3) are available free of charge
via the Internet at http://pubs.acs.org.
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